Nonlocal Total Variation with Primal Dual Algorithm and Stable Simplex Clustering in Unsupervised Hyperspectral Imagery Analysis

نویسندگان

  • Wei Zhu
  • Victoria Chayes
  • Alexandre Tiard
  • Stephanie Sanchez
  • Devin Dahlberg
  • Da Kuang
  • Andrea Bertozzi
  • Stanley Osher
  • Dominique Zosso
چکیده

We focus on implementing a nonlocal total variational method for unsupervised classification of hyperspectral imagery. We minimize the energy directly using a primal dual algorithm, which we modified for the non-local gradient and weighted centroid recalculation. By squaring the labeling function in the fidelity term before re-calculating the cluster centroids, we can implement an unsupervised clustering method with random initialization. We stabilize this method with stable simplex clustering. To better differentiate clusters, we use a linear combination of the cosine and Euclidean distance between spectral signatures instead of the traditional cosine distance. Finally, we speed up the calculation using a k-d tree and approximate nearest neighbor search algorithm for calculation of the weight matrix for distances between pixel signatures. We implement our method on six different datasets and compare results to traditional clustering methods like kmeans, non-negative matrix factorization, and the graph-based MBO scheme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised classification strategy utilizing an endmember extraction technique for airborne hyperspectral remotely sensed imagery

Remote sensing has become an important source of urban land-use/cover classification, and as a result of their high spatial and spectral resolution, airborne hyperspectral images have been widely used to distinguish different urban classes. However, the previous studies into the classification of urban environments have mainly focused on a supervised scenario, which is limited by the selection ...

متن کامل

Analysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques

Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...

متن کامل

A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery

Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...

متن کامل

Parallel Implementation of the k-means Clustering Algorithm for Unsupervised Classification of Hyperspectral Imagery

2 Serial and Parallel Code iii 2.1 Serial Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Computational Burden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 2.2 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 2.3 MPI . . . . . . . . . . ....

متن کامل

Semi-supervised dimensionality reduction using orthogonal projection divergence-based clustering for hyperspectral imagery

Band clustering and selection are applied to dimensionality reduction of hyperspectral imagery. The proposed method is based on a hierarchical clustering structure, which aims to group bands using an information or similarity measure. Specifically, the distance based on orthogonal projection divergence is used as a criterion for clustering. After clustering, a band selection step is applied to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015